100G线路传输技术
现有100G线路传输技术主要有两种方案:多波传输方案和单波传输方案。在100G多波传输方案中,100G信号反向复用为多波长的10Gbps和40GbpsOTU2、OTU3信号。这种方案不会对现有的10G或40G光传送网络产生影响,并可以在现有的器件技术下实现,因而是现阶段可实现的方案。但这种方案的波长利用率较低,也存在波长管理及多个波长间时延差的控制问题,所以这种方案不是100G线路传输技术的最终商用方案。
100G单波传输方案可做到“一个业务,一个波长”,可以简化网络的管理。从器件发展及降低OPEX的角度来看,该方案是未来发展的方向。业界所讨论的100G传输基本上是讨论100Gbps单波的长途传输。由于波特率的提升,100G单波传输信号所受到的各种物理损伤较为严重。业界研究了新的码型以降低物理损伤对100G信号的影响。
40G速率提高到100G,光信噪比OSNR需要增加4dB左右,为了降低光信噪比OSNR的要求,在现有的光网络上传输单波100G信号,需要采用特殊的调制技术来降低波特率。例如PDM-DQPSK由于采用了偏振态、相位的双重调制,就可以把100Gbps的信号速率降低到25G波特率,从而保证在50GHz间隔的波长区传输。为更好地提高接收灵敏度,有时需要采用相干电处理的技术,也就是采用电处理来解决光波长的相干接收。目前,100GWDM的调制技术有多项选择。从现在的发展情况看,业内相信PDM-(D)QPSK会是一个不错的选择,可以实现50GHz的间隔和1000公里以上的无电中继传输,相干光检测可以极大程度地提高色散容限和PMD容限。缺点是发射机光学结构复杂,相位调制效应容限低,另外需要复杂的DSP处理,用于后处理的高速DAC和ASIC芯片目前较少。目前,该方向的研究还处于实验室阶段。
从系统来看,考虑到100GHz的速率只比40GHz提高2.5倍,在C波段传输的波长数目应该保持与现在的WDM系统相同,因此100GHzWDM系统应该基于50GHz间隔,以提高系统容量。
100GE接口技术
100GE接口技术要解决100GE物理端口的高可靠性,并支持完善的监控和保护功能。100GE物理接口主要有三种:10×10G短距离(100m)互联的MMFLAN接口;4×25G中短距离(3km、10km、40km)互联的SMFLAN接口;10G铜线铜缆接口。
在接口架构方案上,100GE接口架构目前有MLD&CAUI、APL和PBL三种方案。VL&CTBI、APL、PBL方案分别根据不同的应用需求而提出。这些方案将会于近年内在IEEE进行广泛讨论,并最终给出最佳方案。100GE封装映射技术
100GE适配到OTN时,可映射到OTU4中,也可反向复用到OTU2/3之中。根据100GE接口的具体实现形式,存在多条封装映射路径。第一,100GE串行信号映射到ODU4。ODU4、OTU4的具体速率正在讨论中,有130Gbps和112Gbps两种选择。由于ODU4/OTU4的速率目前还没有最终形成标准,因此将100GE映射到ODU4的方案还没有最终确定。第二,100GE串行信号反向复用到ODU2e、ODU2、ODU3。其主要有O-DU2e-10v反向复用和ODU2-11v或ODU3-3v反向复用两种方案。ITU-TQ11已经明确将对这两种封装映射路径进行标准化。采用GMP映射方法在技术上可以实现,但标准还不成熟。第三,100GE信号反向复用到10×10G或4×25G。这种方案将高速串行的100GE信号反向复用为10G或25G低速并行的信号。目前,ITU正在讨论承载Multilane100GE的问题,主要有Multi-lanePCS层汇聚再映射到OTN,以及比特透明独立映射两种解决方案。
100G关键器件技术
业界初步估计100G关键器件将于2010年左右开始生产,于2011年~2012年开始规模商用。其中光模块和高速DSP影响最大。只有高速光模块才能实现100Gbps速率的调制。DSP则对于相干电接收至关重要,只有在100G高速率数字处理技术取得突破时,才能实现软判决、相干电接收的复杂电处理,从而提高接收灵敏度,加大100G的传输距离。
来源: |